## Exercise 1.40

Silicon for computer chips is grown in large cylinders called "boules" that are 300 mm in diameter and 2 m in length, as shown. The density of silicon is $2.33 \mathrm{~g} / \mathrm{cm}^{3}$. Silicon wafers for making integrated circuits are sliced from a $2.0-\mathrm{m}$ boule and are typically 0.75 mm thick and 300 mm in diameter. (a) How many wafers can be cut from a single boule? (b) What is the mass of a silicon wafer? (The volume of a cylinder is given by $\pi r^{2} h$, where $r$ is the radius and $h$ is its height.)


Cut wafers

## Solution

## Part (a)

Find how many times 0.75 mm goes into 2 m -this is the number of wafers that can be made from a single boule.

$$
\# \text { of wafers }=\frac{2 \frac{\text { meters }}{\text { boule }}}{0.75 \frac{1 \mathrm{M}}{\text { wafier }} \times \frac{1 \mathrm{~m}}{1000 \mathrm{~mm}}} \approx 3 \times 10^{3} \frac{\text { wafers }}{\text { boule }}
$$

## Part (b)

The mass of a silicon wafer is

$$
\begin{aligned}
\text { mass } & =\text { density } \times \text { volume } \\
& =2.33 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \times\left(\frac{1 \mathrm{cmI}}{10 \mathrm{~mm}}\right)^{3} \pi\left(\frac{300 \mathrm{~mm}}{2}\right)^{2}(0.75 \mathrm{~mm}) \\
& \approx 1 \times 10^{2} \mathrm{~g} .
\end{aligned}
$$

